Comparing to conventional wide-field imaging microscopes, confocal microscopy hold significant advantages in image contrast enhancement, 3D sectioning capabilities, and compatibility with specialized detectors. For applications such as live cell imaging, slow acquisition speed is a key barrier to adaption of confocal microscopy. While wide-field microscopy is typically faster, multiplexed confocal schemes such as using a spinning foci array can significantly increase the image acquisition rate. The moving foci array in the spinning disc, however, prevents the use of specialized discrete photo detectors arrays.

We have developed a suite of technologies to generate, scan, and measure 100-1000 confocal foci simultaneously, while is compatible with stationary discrete detectors. Another key feature of the technique is that it can be retrofitted to a conventional wide-field fluorescence microscope. We are also developing various related technologies for its applications in drug discovery and in vivo imaging.

Publications:

  • Nehad Hirmiz, Anthony Tsikouras, Elizabeth J. Osterlund, Morgan Richards, David W. Andrews, and Qiyin Fang, “Cross-talk reduction in a multiplexed synchroscan streak camera with simultaneous calibration,” Opt. Express 27: 22602-22614, 2019, doi.org/10.1364/OE.27.022602 (Open Access)
  • Anthony Tsikouras, Pietro Peronio, Ivan Rech, Nehad Hirmiz, M. Jamal Deen, and Qiyin Fang, “Characterization of SPAD Array for Multifocal High-Content Screening Applications,” Photonics 3(4):56, 2016; doi: 10.3390/photonics3040056, (Open Access)
  • Anthony Tsikouras, Richard Berman, David W. Andrews and Qiyin Fang, “High-speed multifocal array scanning using refractive window tilting,” Biomedical Optics Express 6, 3737-3757, 2015. (Open Access)
  • Anthony Tsikouras, Jin Ning, Sandy Ng, Rirchard Berman, David W. Andrews, and Qiyin Fang, “Streak camera crosstalk reduction using a multiple decay optical fiber bundle,” Optics Letters 37(2): 250-252, 2012. (PDF)